Cargando…
In Vivo Pattern Classification of Ingestive Behavior in Ruminants Using FBG Sensors and Machine Learning
Pattern classification of ingestive behavior in grazing animals has extreme importance in studies related to animal nutrition, growth and health. In this paper, a system to classify chewing patterns of ruminants in in vivo experiments is developed. The proposal is based on data collected by optical...
Autores principales: | Pegorini, Vinicius, Karam, Leandro Zen, Pitta, Christiano Santos Rocha, Cardoso, Rafael, da Silva, Jean Carlos Cardozo, Kalinowski, Hypolito José, Ribeiro, Richardson, Bertotti, Fábio Luiz, Assmann, Tangriani Simioni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701289/ https://www.ncbi.nlm.nih.gov/pubmed/26569250 http://dx.doi.org/10.3390/s151128456 |
Ejemplares similares
-
Critical Issues of Double-Metal Layer Coating on FBG for Applications at High Temperatures
por: Lupi, Carla, et al.
Publicado: (2019) -
Force Monitoring in a Maxilla Model and Dentition Using Optical Fiber Bragg Gratings
por: Milczewski, Maura Scandelari, et al.
Publicado: (2012) -
FBG Interrogation Method with High Resolution and Response Speed Based on a Reflective-Matched FBG Scheme
por: Cui, Jiwen, et al.
Publicado: (2015) -
The Effect of Tannins on Mediterranean Ruminant Ingestive Behavior: The Role of the Oral Cavity
por: Lamy, Elsa, et al.
Publicado: (2011) -
Evaluation of Ingestive Behavior, Ruminal and Blood Parameters, Performance, and Thermography as a Phenotypic Divergence Markers of Residual Feed Intake in Rearing Dairy Heifers
por: Lombardi, Mayara Campos, et al.
Publicado: (2022)