Cargando…
Development of a Carbon Nanotube-Based Touchscreen Capable of Multi-Touch and Multi-Force Sensing
A force sensing touchscreen, which detects touch point and touch force simultaneously by sensing a change in electric capacitance, was designed and fabricated. It was made with single-walled carbon nanotubes (SWCNTs) which have better mechanical and chemical characteristics than the indium-tin-oxide...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701304/ https://www.ncbi.nlm.nih.gov/pubmed/26580617 http://dx.doi.org/10.3390/s151128732 |
Sumario: | A force sensing touchscreen, which detects touch point and touch force simultaneously by sensing a change in electric capacitance, was designed and fabricated. It was made with single-walled carbon nanotubes (SWCNTs) which have better mechanical and chemical characteristics than the indium-tin-oxide transparent electrodes used in most contemporary touchscreen devices. The SWCNTs, with a transmittance of about 85% and electric conductivity of 400 Ω per square; were coated and patterned on glass and polyethyleneterephthalate (PET) film substrates. The constructed force sensing touchscreen has a total size and thickness of 62 mm × 100 mm × 1.4 mm, and is composed of 11 driving line and 19 receiving line channels. The gap between the channels was designed to be 20 µm, taking visibility into consideration, and patterned by a photolithography and plasma etching processes. The mutual capacitance formed by the upper and lower transparent electrodes was initially about 2.8 pF and, on applying a 500 gf force with a 3 mm diameter tip, it showed a 25% capacitance variation. Furthermore, the touchscreen can detect multiple touches and forces simultaneously and is unaffected by touch material characteristics, such as conductance or non-conductance. |
---|