Cargando…
Multi-Sensor Data Fusion Identification for Shearer Cutting Conditions Based on Parallel Quasi-Newton Neural Networks and the Dempster-Shafer Theory
In order to efficiently and accurately identify the cutting condition of a shearer, this paper proposed an intelligent multi-sensor data fusion identification method using the parallel quasi-Newton neural network (PQN-NN) and the Dempster-Shafer (DS) theory. The vibration acceleration signals and cu...
Autores principales: | Si, Lei, Wang, Zhongbin, Liu, Xinhua, Tan, Chao, Xu, Jing, Zheng, Kehong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701307/ https://www.ncbi.nlm.nih.gov/pubmed/26580620 http://dx.doi.org/10.3390/s151128772 |
Ejemplares similares
-
Sensor Data Fusion for Accurate Cloud Presence Prediction Using Dempster-Shafer Evidence Theory
por: Li, Jiaming, et al.
Publicado: (2010) -
Novel Paradigm for Constructing Masses in Dempster-Shafer Evidence Theory for Wireless Sensor Network's Multisource Data Fusion
por: Zhang, Zhenjiang, et al.
Publicado: (2014) -
Exploring the Combination of Dempster-Shafer Theory and Neural Network for Predicting Trust and Distrust
por: Wang, Xin, et al.
Publicado: (2016) -
Dempster-Shafer Theory: Ηow Constraint Programming Can Help
por: Kaltsounidis, Alexandros, et al.
Publicado: (2020) -
A modified belief entropy in Dempster-Shafer framework
por: Zhou, Deyun, et al.
Publicado: (2017)