Cargando…

A Passive Testing Approach for Protocols in Wireless Sensor Networks

Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient an...

Descripción completa

Detalles Bibliográficos
Autores principales: Che, Xiaoping, Maag, Stephane, Tan, Hwee-Xian, Tan, Hwee-Pink, Zhou, Zhangbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701331/
https://www.ncbi.nlm.nih.gov/pubmed/26610495
http://dx.doi.org/10.3390/s151129250
Descripción
Sumario:Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results.