Cargando…
Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks
Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) in an asynchronous Sensory Motor rhythm (SMR)-based BC...
Autores principales: | Buccino, Alessio Paolo, Keles, Hasan Onur, Omurtag, Ahmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701662/ https://www.ncbi.nlm.nih.gov/pubmed/26730580 http://dx.doi.org/10.1371/journal.pone.0146610 |
Ejemplares similares
-
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017) -
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
por: Sirpal, Parikshat, et al.
Publicado: (2019) -
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
por: Hong, Keum-Shik, et al.
Publicado: (2018) -
OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface
por: Ali, Muhammad Umair, et al.
Publicado: (2023) -
Open access dataset integrating EEG and fNIRS during Stroop tasks
por: Chen, Zemeng, et al.
Publicado: (2023)