Cargando…

Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption

Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic interm...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Maren L., Lopez, Marcelo F., Archer, Kellie J., Wolen, Aaron R., Becker, Howard C., Miles, Michael F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701666/
https://www.ncbi.nlm.nih.gov/pubmed/26730594
http://dx.doi.org/10.1371/journal.pone.0146257
_version_ 1782408505173475328
author Smith, Maren L.
Lopez, Marcelo F.
Archer, Kellie J.
Wolen, Aaron R.
Becker, Howard C.
Miles, Michael F.
author_facet Smith, Maren L.
Lopez, Marcelo F.
Archer, Kellie J.
Wolen, Aaron R.
Becker, Howard C.
Miles, Michael F.
author_sort Smith, Maren L.
collection PubMed
description Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol.
format Online
Article
Text
id pubmed-4701666
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47016662016-01-15 Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption Smith, Maren L. Lopez, Marcelo F. Archer, Kellie J. Wolen, Aaron R. Becker, Howard C. Miles, Michael F. PLoS One Research Article Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol. Public Library of Science 2016-01-05 /pmc/articles/PMC4701666/ /pubmed/26730594 http://dx.doi.org/10.1371/journal.pone.0146257 Text en © 2016 Smith et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
spellingShingle Research Article
Smith, Maren L.
Lopez, Marcelo F.
Archer, Kellie J.
Wolen, Aaron R.
Becker, Howard C.
Miles, Michael F.
Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption
title Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption
title_full Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption
title_fullStr Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption
title_full_unstemmed Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption
title_short Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption
title_sort time-course analysis of brain regional expression network responses to chronic intermittent ethanol and withdrawal: implications for mechanisms underlying excessive ethanol consumption
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701666/
https://www.ncbi.nlm.nih.gov/pubmed/26730594
http://dx.doi.org/10.1371/journal.pone.0146257
work_keys_str_mv AT smithmarenl timecourseanalysisofbrainregionalexpressionnetworkresponsestochronicintermittentethanolandwithdrawalimplicationsformechanismsunderlyingexcessiveethanolconsumption
AT lopezmarcelof timecourseanalysisofbrainregionalexpressionnetworkresponsestochronicintermittentethanolandwithdrawalimplicationsformechanismsunderlyingexcessiveethanolconsumption
AT archerkelliej timecourseanalysisofbrainregionalexpressionnetworkresponsestochronicintermittentethanolandwithdrawalimplicationsformechanismsunderlyingexcessiveethanolconsumption
AT wolenaaronr timecourseanalysisofbrainregionalexpressionnetworkresponsestochronicintermittentethanolandwithdrawalimplicationsformechanismsunderlyingexcessiveethanolconsumption
AT beckerhowardc timecourseanalysisofbrainregionalexpressionnetworkresponsestochronicintermittentethanolandwithdrawalimplicationsformechanismsunderlyingexcessiveethanolconsumption
AT milesmichaelf timecourseanalysisofbrainregionalexpressionnetworkresponsestochronicintermittentethanolandwithdrawalimplicationsformechanismsunderlyingexcessiveethanolconsumption