Cargando…

White matter plasticity in the cerebellum of elite basketball athletes

Recent neuroimaging studies indicate that learning a novel motor skill induces plastic changes in the brain structures of both gray matter (GM) and white matter (WM) that are associated with a specific practice. We previously reported an increased volume of vermian lobules VI-VII (declive, folium, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, In Sung, Lee, Ye Na, Kwon, Soonwook, Lee, Nam Joon, Rhyu, Im Joo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Association of Anatomists 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701700/
https://www.ncbi.nlm.nih.gov/pubmed/26770877
http://dx.doi.org/10.5115/acb.2015.48.4.262
Descripción
Sumario:Recent neuroimaging studies indicate that learning a novel motor skill induces plastic changes in the brain structures of both gray matter (GM) and white matter (WM) that are associated with a specific practice. We previously reported an increased volume of vermian lobules VI-VII (declive, folium, and tuber) in elite basketball athletes who require coordination for dribbling and shooting a ball, which awakened the central role of the cerebellum in motor coordination. However, the precise factor contributing to the increased volume was not determined. In the present study, we compared the volumes of the GM and WM in the sub-regions of the cerebellar vermis based on manual voxel analysis with the ImageJ program. We found significantly larger WM volumes of vermian lobules VI-VII (declive, folium, and tuber) in elite basketball athletes in response to long-term intensive motor learning. We suggest that the larger WM volumes of this region in elite basketball athletes represent a motor learning-induced plastic change, and that the WM of this region likely plays a critical role in coordination. This finding will contribute to gaining a deeper understanding of motor learning-evoked WM plasticity.