Cargando…

Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material

In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydro...

Descripción completa

Detalles Bibliográficos
Autores principales: Benchirouf, Abderrahmane, Müller, Christian, Kanoun, Olfa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701710/
https://www.ncbi.nlm.nih.gov/pubmed/26732277
http://dx.doi.org/10.1186/s11671-015-1216-5
_version_ 1782408514811985920
author Benchirouf, Abderrahmane
Müller, Christian
Kanoun, Olfa
author_facet Benchirouf, Abderrahmane
Müller, Christian
Kanoun, Olfa
author_sort Benchirouf, Abderrahmane
collection PubMed
description In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11671-015-1216-5) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4701710
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-47017102016-01-12 Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material Benchirouf, Abderrahmane Müller, Christian Kanoun, Olfa Nanoscale Res Lett Nano Express In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11671-015-1216-5) contains supplementary material, which is available to authorized users. Springer US 2016-01-05 /pmc/articles/PMC4701710/ /pubmed/26732277 http://dx.doi.org/10.1186/s11671-015-1216-5 Text en © Benchirouf et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Nano Express
Benchirouf, Abderrahmane
Müller, Christian
Kanoun, Olfa
Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material
title Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material
title_full Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material
title_fullStr Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material
title_full_unstemmed Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material
title_short Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material
title_sort electromechanical behavior of chemically reduced graphene oxide and multi-walled carbon nanotube hybrid material
topic Nano Express
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701710/
https://www.ncbi.nlm.nih.gov/pubmed/26732277
http://dx.doi.org/10.1186/s11671-015-1216-5
work_keys_str_mv AT benchiroufabderrahmane electromechanicalbehaviorofchemicallyreducedgrapheneoxideandmultiwalledcarbonnanotubehybridmaterial
AT mullerchristian electromechanicalbehaviorofchemicallyreducedgrapheneoxideandmultiwalledcarbonnanotubehybridmaterial
AT kanounolfa electromechanicalbehaviorofchemicallyreducedgrapheneoxideandmultiwalledcarbonnanotubehybridmaterial