Cargando…
Synthesis of PtM (M=Co, Ni)/Reduced Graphene Oxide Nanocomposites as Electrocatalysts for the Oxygen Reduction Reaction
A series of PtM (M=Co, Ni)/reduced graphene oxide (rG-O) nanocomposites were successfully synthesized through a facile hydrothermal method. The as-synthesized nanocomposites were characterized using transmission electron microscopy and high-resolution transmission electron microscopy, X-ray diffract...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701711/ https://www.ncbi.nlm.nih.gov/pubmed/26732276 http://dx.doi.org/10.1186/s11671-015-1208-5 |
Sumario: | A series of PtM (M=Co, Ni)/reduced graphene oxide (rG-O) nanocomposites were successfully synthesized through a facile hydrothermal method. The as-synthesized nanocomposites were characterized using transmission electron microscopy and high-resolution transmission electron microscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectrometer, and X-ray photoelectron spectroscopy. The electrochemical performance and oxygen reduction reaction (ORR) activity of PtM/rG-O nanocomposites were evaluated using cyclic voltammetry and the rotating disk electrode method. The results show that the addition of the reductant (1,2-hexadecanediol, HAD) in the reaction system slightly improved the ORR activity of PtM/rG-O nanocomposites with a negligible influence on the size and morphology of alloy NPs. Furthermore, PtNi/rG-O nanocomposites displayed the higher electrochemical stability than PtCo/rG-O nanocomposites. These results provide a facile strategy for the synthesis of Pt-based alloy NPs/rG-O nanocomposites for applications in catalysis and energy-related processes. |
---|