Cargando…
DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism
Structural maintenance of chromosome (SMC) complexes are proteinaceous rings that embrace DNA to enable vital chromosomal functions. The ring is formed by two SMC subunits, closed at a pair of ATPase heads, whose interaction is reinforced by a kleisin subunit. Using biochemical analysis of fission-y...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701713/ https://www.ncbi.nlm.nih.gov/pubmed/26687354 http://dx.doi.org/10.1016/j.cell.2015.11.030 |
_version_ | 1782408515512434688 |
---|---|
author | Murayama, Yasuto Uhlmann, Frank |
author_facet | Murayama, Yasuto Uhlmann, Frank |
author_sort | Murayama, Yasuto |
collection | PubMed |
description | Structural maintenance of chromosome (SMC) complexes are proteinaceous rings that embrace DNA to enable vital chromosomal functions. The ring is formed by two SMC subunits, closed at a pair of ATPase heads, whose interaction is reinforced by a kleisin subunit. Using biochemical analysis of fission-yeast cohesin, we find that a similar series of events facilitates both topological entrapment and release of DNA. DNA-sensing lysines trigger ATP hydrolysis to open the SMC head interface, whereas the Wapl subunit disengages kleisin, but only after ATP rebinds. This suggests an interlocking gate mechanism for DNA transport both into and out of the cohesin ring. The entry direction is facilitated by a cohesin loader that appears to fold cohesin to expose the DNA sensor. Our results provide a model for dynamic DNA binding by all members of the SMC family and explain how lysine acetylation of cohesin establishes enduring sister chromatid cohesion. |
format | Online Article Text |
id | pubmed-4701713 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-47017132016-01-27 DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism Murayama, Yasuto Uhlmann, Frank Cell Article Structural maintenance of chromosome (SMC) complexes are proteinaceous rings that embrace DNA to enable vital chromosomal functions. The ring is formed by two SMC subunits, closed at a pair of ATPase heads, whose interaction is reinforced by a kleisin subunit. Using biochemical analysis of fission-yeast cohesin, we find that a similar series of events facilitates both topological entrapment and release of DNA. DNA-sensing lysines trigger ATP hydrolysis to open the SMC head interface, whereas the Wapl subunit disengages kleisin, but only after ATP rebinds. This suggests an interlocking gate mechanism for DNA transport both into and out of the cohesin ring. The entry direction is facilitated by a cohesin loader that appears to fold cohesin to expose the DNA sensor. Our results provide a model for dynamic DNA binding by all members of the SMC family and explain how lysine acetylation of cohesin establishes enduring sister chromatid cohesion. Cell Press 2015-12-17 /pmc/articles/PMC4701713/ /pubmed/26687354 http://dx.doi.org/10.1016/j.cell.2015.11.030 Text en © 2015 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Murayama, Yasuto Uhlmann, Frank DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism |
title | DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism |
title_full | DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism |
title_fullStr | DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism |
title_full_unstemmed | DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism |
title_short | DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism |
title_sort | dna entry into and exit out of the cohesin ring by an interlocking gate mechanism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701713/ https://www.ncbi.nlm.nih.gov/pubmed/26687354 http://dx.doi.org/10.1016/j.cell.2015.11.030 |
work_keys_str_mv | AT murayamayasuto dnaentryintoandexitoutofthecohesinringbyaninterlockinggatemechanism AT uhlmannfrank dnaentryintoandexitoutofthecohesinringbyaninterlockinggatemechanism |