Cargando…

A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli

Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular org...

Descripción completa

Detalles Bibliográficos
Autores principales: Dewachter, Liselot, Verstraeten, Natalie, Monteyne, Daniel, Kint, Cyrielle Ines, Versées, Wim, Pérez-Morga, David, Michiels, Jan, Fauvart, Maarten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Microbiology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701833/
https://www.ncbi.nlm.nih.gov/pubmed/26695632
http://dx.doi.org/10.1128/mBio.01935-15
_version_ 1782408543192743936
author Dewachter, Liselot
Verstraeten, Natalie
Monteyne, Daniel
Kint, Cyrielle Ines
Versées, Wim
Pérez-Morga, David
Michiels, Jan
Fauvart, Maarten
author_facet Dewachter, Liselot
Verstraeten, Natalie
Monteyne, Daniel
Kint, Cyrielle Ines
Versées, Wim
Pérez-Morga, David
Michiels, Jan
Fauvart, Maarten
author_sort Dewachter, Liselot
collection PubMed
description Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular organisms would profit from this kind of altruistic behavior at the cellular level. However, over the past decade, compelling experimental evidence has established the existence of such pathways in bacteria. Here, we report that expression of a mutant isoform of the essential GTPase ObgE causes rapid loss of viability in Escherichia coli. The physiological changes that occur upon expression of this mutant protein—including loss of membrane potential, chromosome condensation and fragmentation, exposure of phosphatidylserine on the cell surface, and membrane blebbing—point to a PCD mechanism. Importantly, key regulators and executioners of known bacterial PCD pathways were shown not to influence this cell death program. Collectively, our results suggest that the cell death pathway described in this work constitutes a new mode of bacterial PCD.
format Online
Article
Text
id pubmed-4701833
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Society of Microbiology
record_format MEDLINE/PubMed
spelling pubmed-47018332016-01-08 A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli Dewachter, Liselot Verstraeten, Natalie Monteyne, Daniel Kint, Cyrielle Ines Versées, Wim Pérez-Morga, David Michiels, Jan Fauvart, Maarten mBio Observation Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular organisms would profit from this kind of altruistic behavior at the cellular level. However, over the past decade, compelling experimental evidence has established the existence of such pathways in bacteria. Here, we report that expression of a mutant isoform of the essential GTPase ObgE causes rapid loss of viability in Escherichia coli. The physiological changes that occur upon expression of this mutant protein—including loss of membrane potential, chromosome condensation and fragmentation, exposure of phosphatidylserine on the cell surface, and membrane blebbing—point to a PCD mechanism. Importantly, key regulators and executioners of known bacterial PCD pathways were shown not to influence this cell death program. Collectively, our results suggest that the cell death pathway described in this work constitutes a new mode of bacterial PCD. American Society of Microbiology 2015-12-22 /pmc/articles/PMC4701833/ /pubmed/26695632 http://dx.doi.org/10.1128/mBio.01935-15 Text en Copyright © 2015 Dewachter et al. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0/) , which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Observation
Dewachter, Liselot
Verstraeten, Natalie
Monteyne, Daniel
Kint, Cyrielle Ines
Versées, Wim
Pérez-Morga, David
Michiels, Jan
Fauvart, Maarten
A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli
title A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli
title_full A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli
title_fullStr A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli
title_full_unstemmed A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli
title_short A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli
title_sort single-amino-acid substitution in obg activates a new programmed cell death pathway in escherichia coli
topic Observation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701833/
https://www.ncbi.nlm.nih.gov/pubmed/26695632
http://dx.doi.org/10.1128/mBio.01935-15
work_keys_str_mv AT dewachterliselot asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT verstraetennatalie asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT monteynedaniel asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT kintcyrielleines asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT verseeswim asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT perezmorgadavid asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT michielsjan asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT fauvartmaarten asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT dewachterliselot singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT verstraetennatalie singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT monteynedaniel singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT kintcyrielleines singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT verseeswim singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT perezmorgadavid singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT michielsjan singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli
AT fauvartmaarten singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli