Cargando…
A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli
Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular org...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Microbiology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701833/ https://www.ncbi.nlm.nih.gov/pubmed/26695632 http://dx.doi.org/10.1128/mBio.01935-15 |
_version_ | 1782408543192743936 |
---|---|
author | Dewachter, Liselot Verstraeten, Natalie Monteyne, Daniel Kint, Cyrielle Ines Versées, Wim Pérez-Morga, David Michiels, Jan Fauvart, Maarten |
author_facet | Dewachter, Liselot Verstraeten, Natalie Monteyne, Daniel Kint, Cyrielle Ines Versées, Wim Pérez-Morga, David Michiels, Jan Fauvart, Maarten |
author_sort | Dewachter, Liselot |
collection | PubMed |
description | Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular organisms would profit from this kind of altruistic behavior at the cellular level. However, over the past decade, compelling experimental evidence has established the existence of such pathways in bacteria. Here, we report that expression of a mutant isoform of the essential GTPase ObgE causes rapid loss of viability in Escherichia coli. The physiological changes that occur upon expression of this mutant protein—including loss of membrane potential, chromosome condensation and fragmentation, exposure of phosphatidylserine on the cell surface, and membrane blebbing—point to a PCD mechanism. Importantly, key regulators and executioners of known bacterial PCD pathways were shown not to influence this cell death program. Collectively, our results suggest that the cell death pathway described in this work constitutes a new mode of bacterial PCD. |
format | Online Article Text |
id | pubmed-4701833 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | American Society of Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-47018332016-01-08 A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli Dewachter, Liselot Verstraeten, Natalie Monteyne, Daniel Kint, Cyrielle Ines Versées, Wim Pérez-Morga, David Michiels, Jan Fauvart, Maarten mBio Observation Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular organisms would profit from this kind of altruistic behavior at the cellular level. However, over the past decade, compelling experimental evidence has established the existence of such pathways in bacteria. Here, we report that expression of a mutant isoform of the essential GTPase ObgE causes rapid loss of viability in Escherichia coli. The physiological changes that occur upon expression of this mutant protein—including loss of membrane potential, chromosome condensation and fragmentation, exposure of phosphatidylserine on the cell surface, and membrane blebbing—point to a PCD mechanism. Importantly, key regulators and executioners of known bacterial PCD pathways were shown not to influence this cell death program. Collectively, our results suggest that the cell death pathway described in this work constitutes a new mode of bacterial PCD. American Society of Microbiology 2015-12-22 /pmc/articles/PMC4701833/ /pubmed/26695632 http://dx.doi.org/10.1128/mBio.01935-15 Text en Copyright © 2015 Dewachter et al. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0/) , which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Observation Dewachter, Liselot Verstraeten, Natalie Monteyne, Daniel Kint, Cyrielle Ines Versées, Wim Pérez-Morga, David Michiels, Jan Fauvart, Maarten A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli |
title | A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli |
title_full | A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli |
title_fullStr | A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli |
title_full_unstemmed | A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli |
title_short | A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli |
title_sort | single-amino-acid substitution in obg activates a new programmed cell death pathway in escherichia coli |
topic | Observation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701833/ https://www.ncbi.nlm.nih.gov/pubmed/26695632 http://dx.doi.org/10.1128/mBio.01935-15 |
work_keys_str_mv | AT dewachterliselot asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT verstraetennatalie asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT monteynedaniel asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT kintcyrielleines asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT verseeswim asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT perezmorgadavid asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT michielsjan asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT fauvartmaarten asingleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT dewachterliselot singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT verstraetennatalie singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT monteynedaniel singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT kintcyrielleines singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT verseeswim singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT perezmorgadavid singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT michielsjan singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli AT fauvartmaarten singleaminoacidsubstitutioninobgactivatesanewprogrammedcelldeathpathwayinescherichiacoli |