Cargando…
CrossNorm: a novel normalization strategy for microarray data in cancers
Normalization is essential to get rid of biases in microarray data for their accurate analysis. Existing normalization methods for microarray gene expression data commonly assume a similar global expression pattern among samples being studied. However, scenarios of global shifts in gene expressions...
Autores principales: | Cheng, Lixin, Lo, Leung-Yau, Tang, Nelson L. S., Wang, Dong, Leung, Kwong-Sak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702063/ https://www.ncbi.nlm.nih.gov/pubmed/26732145 http://dx.doi.org/10.1038/srep18898 |
Ejemplares similares
-
Normalization Methods for the Analysis of Unbalanced Transcriptome Data: A Review
por: Liu, Xueyan, et al.
Publicado: (2019) -
SMILE: a novel procedure for subcellular module identification with localisation expansion
por: Cheng, Lixin, et al.
Publicado: (2018) -
High-order dynamic Bayesian Network learning with hidden common causes for causal gene regulatory network
por: Lo, Leung-Yau, et al.
Publicado: (2015) -
Time Delayed Causal Gene Regulatory Network Inference with Hidden Common Causes
por: Lo, Leung-Yau, et al.
Publicado: (2015) -
Exploiting locational and topological overlap model to identify modules in protein interaction networks
por: Cheng, Lixin, et al.
Publicado: (2019)