Cargando…
Measuring the robustness of link prediction algorithms under noisy environment
Link prediction in complex networks is to estimate the likelihood of two nodes to interact with each other in the future. As this problem has applications in a large number of real systems, many link prediction methods have been proposed. However, the validation of these methods is so far mainly con...
Autores principales: | Zhang, Peng, Wang, Xiang, Wang, Futian, Zeng, An, Xiao, Jinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702065/ https://www.ncbi.nlm.nih.gov/pubmed/26733156 http://dx.doi.org/10.1038/srep18881 |
Ejemplares similares
-
Robust speaker recognition in noisy environments
por: Rao, K Sreenivasa, et al.
Publicado: (2014) -
Algorithm Design for Edge Detection of High-Speed Moving Target Image under Noisy Environment
por: Han, Fangfang, et al.
Publicado: (2019) -
An improved teaching–learning based robust edge detection algorithm for noisy images
por: Thirumavalavan, Sasirooba, et al.
Publicado: (2016) -
The reconstruction of complex networks with community structure
por: Zhang, Peng, et al.
Publicado: (2015) -
Noisy Monte Carlo Algorithm
por: Bakeyev, Timur D., et al.
Publicado: (2001)