Cargando…
Discovering new mTOR inhibitors for cancer treatment through virtual screening methods and in vitro assays
Mammalian target of rapamycin (mTOR) is an attractive target for new anticancer drug development. We recently developed in silico models to distinguish mTOR inhibitors and non-inhibitors. In this study, we developed an integrated strategy for identifying new mTOR inhibitors using cascaded in silico...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702177/ https://www.ncbi.nlm.nih.gov/pubmed/26732172 http://dx.doi.org/10.1038/srep18987 |
Sumario: | Mammalian target of rapamycin (mTOR) is an attractive target for new anticancer drug development. We recently developed in silico models to distinguish mTOR inhibitors and non-inhibitors. In this study, we developed an integrated strategy for identifying new mTOR inhibitors using cascaded in silico screening models. With this strategy, fifteen new mTOR kinase inhibitors including four compounds with IC(50) values below 10 μM were discovered. In particular, compound 17 exhibited potent anticancer activities against four tumor cell lines, including MCF-7, HeLa, MGC-803, and C6, with IC(50) values of 1.90, 2.74, 3.50 and 11.05 μM. Furthermore, cellular studies and western blot analyses revealed that 17 induces cell death via apoptosis by targeting both mTORC1 and mTORC2 within cells and arrests the cell cycle of HeLa at the G(1)/G(0)-phase. Finally, multi-nanosecond explicit solvent simulations and MM/GBSA analyses were carried out to study the inhibitory mechanisms of 13, 17, and 40 for mTOR. The potent compounds presented here are worthy of further investigation. |
---|