Cargando…
A statistical approach for 5′ splice site prediction using short sequence motifs and without encoding sequence data
BACKGROUND: Most of the approaches for splice site prediction are based on machine learning techniques. Though, these approaches provide high prediction accuracy, the window lengths used are longer in size. Hence, these approaches may not be suitable to predict the novel splice variants using the sh...
Autores principales: | Meher, Prabina Kumar, Sahu, Tanmaya Kumar, Rao, Atmakuri Ramakrishna, Wahi, Sant Dass |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702320/ https://www.ncbi.nlm.nih.gov/pubmed/25420551 http://dx.doi.org/10.1186/s12859-014-0362-6 |
Ejemplares similares
-
Prediction of donor splice sites using random forest with a new sequence encoding approach
por: Meher, Prabina Kumar, et al.
Publicado: (2016) -
Identification of donor splice sites using support vector machine: a computational approach based on positional, compositional and dependency features
por: Meher, Prabina Kumar, et al.
Publicado: (2016) -
Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC
por: Meher, Prabina Kumar, et al.
Publicado: (2017) -
DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins
por: Meher, Prabina Kumar, et al.
Publicado: (2017) -
mLoc-mRNA: predicting multiple sub-cellular localization of mRNAs using random forest algorithm coupled with feature selection via elastic net
por: Meher, Prabina Kumar, et al.
Publicado: (2021)