Cargando…
A novel semi-supervised algorithm for the taxonomic assignment of metagenomic reads
BACKGROUND: Taxonomic assignment is a crucial step in a metagenomic project which aims to identify the origin of sequences in an environmental sample. Among the existing methods, since composition-based algorithms are not sufficient for classifying short reads, recent algorithms use only the feature...
Autores principales: | Le, Vinh Van, Tran, Lang Van, Tran, Hoai Van |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702387/ https://www.ncbi.nlm.nih.gov/pubmed/26740458 http://dx.doi.org/10.1186/s12859-015-0872-x |
Ejemplares similares
-
An improved statistical model for taxonomic assignment of metagenomics
por: Yao, Yujing, et al.
Publicado: (2018) -
A two-phase binning algorithm using l-mer frequency on groups of non-overlapping reads
por: Vinh, Le Van, et al.
Publicado: (2015) -
Classification of Metagenomics Data at Lower Taxonomic Level Using a Robust Supervised Classifier
por: Hou, Tao, et al.
Publicado: (2015) -
A Statistical Framework for Accurate Taxonomic Assignment of Metagenomic Sequencing Reads
por: Jiang, Hongmei, et al.
Publicado: (2012) -
Deriving enzymatic and taxonomic signatures of metagenomes from short read data
por: Weingart, Uri, et al.
Publicado: (2010)