Cargando…

How to Capitalize on the Retest Effect in Future Trials on Huntington’s Disease

The retest effect—improvement of performance on second exposure to a task—may impede the detection of cognitive decline in clinical trials for neurodegenerative diseases. We assessed the impact of the retest effect in Huntington’s disease trials, and investigated its possible neutralization. We enro...

Descripción completa

Detalles Bibliográficos
Autores principales: Schramm, Catherine, Katsahian, Sandrine, Youssov, Katia, Démonet, Jean-François, Krystkowiak, Pierre, Supiot, Frédéric, Verny, Christophe, Cleret de Langavant, Laurent, Bachoud-Lévi, Anne-Catherine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703129/
https://www.ncbi.nlm.nih.gov/pubmed/26714284
http://dx.doi.org/10.1371/journal.pone.0145842
Descripción
Sumario:The retest effect—improvement of performance on second exposure to a task—may impede the detection of cognitive decline in clinical trials for neurodegenerative diseases. We assessed the impact of the retest effect in Huntington’s disease trials, and investigated its possible neutralization. We enrolled 54 patients in the Multicentric Intracerebral Grafting in Huntington’s Disease (MIG-HD) trial and 39 in the placebo arm of the Riluzole trial in Huntington’s Disease (RIL-HD). All were assessed with the Unified Huntington’s Disease Rating Scale (UHDRS) plus additional cognitive tasks at baseline (A(1)), shortly after baseline (A(2)) and one year later (A(3)). We used paired t-tests to analyze the retest effect between A(1) and A(2). For each task of the MIG-HD study, we used a stepwise algorithm to design models predictive of patient performance at A(3), which we applied to the RIL-HD trial for external validation. We observed a retest effect in most cognitive tasks. A decline in performance at one year was detected in 3 of the 15 cognitive tasks with A(1) as the baseline, and 9 of the 15 cognitive tasks with A(2) as the baseline. We also included the retest effect in performance modeling and showed that it facilitated performance prediction one year later for 14 of the 15 cognitive tasks. The retest effect may mask cognitive decline in patients with neurodegenerative diseases. The dual baseline can improve clinical trial design, and better prediction should homogenize patient groups, resulting in smaller numbers of participants being required.