Cargando…
AKAP9 regulates activation-induced retention of T lymphocytes at sites of inflammation
The mechanisms driving T cell homing to lymph nodes and migration to tissue are well described but little is known about factors that affect T cell egress from tissues. Here, we generate mice with a T cell-specific deletion of the scaffold protein A kinase anchoring protein 9 (AKAP9) and use models...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703868/ https://www.ncbi.nlm.nih.gov/pubmed/26680259 http://dx.doi.org/10.1038/ncomms10182 |
Sumario: | The mechanisms driving T cell homing to lymph nodes and migration to tissue are well described but little is known about factors that affect T cell egress from tissues. Here, we generate mice with a T cell-specific deletion of the scaffold protein A kinase anchoring protein 9 (AKAP9) and use models of inflammatory disease to demonstrate that AKAP9 is dispensable for T cell priming and migration into tissues and lymph nodes, but is required for T cell retention in tissues. AKAP9 deficiency results in increased T cell egress to draining lymph nodes, which is associated with impaired T cell re-activation in tissues and protection from organ damage. AKAP9-deficient T cells exhibit reduced microtubule-dependent recycling of TCRs back to the cell surface and this affects antigen-dependent activation, primarily by non-classical antigen-presenting cells. Thus, AKAP9-dependent TCR trafficking drives efficient T cell re-activation and extends their retention at sites of inflammation with implications for disease pathogenesis. |
---|