Cargando…
GeNN: a code generation framework for accelerated brain simulations
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GP...
Autores principales: | Yavuz, Esin, Turner, James, Nowotny, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703976/ https://www.ncbi.nlm.nih.gov/pubmed/26740369 http://dx.doi.org/10.1038/srep18854 |
Ejemplares similares
-
More flexibility for code generation with GeNN v2.1
por: Nowotny, Thomas, et al.
Publicado: (2015) -
Simulating spiking neural networks on massively parallel graphical processing units using a code generation approach with GeNN
por: Yavuz, Esin, et al.
Publicado: (2014) -
Brian2GeNN: accelerating spiking neural network simulations with graphics hardware
por: Stimberg, Marcel, et al.
Publicado: (2020) -
SpineML and Brian 2.0 interfaces for using GPU enhanced Neuronal Networks (GeNN)
por: Nowotny, Thomas, et al.
Publicado: (2014) -
Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST
por: Schmitt, Felix Johannes, et al.
Publicado: (2023)