Cargando…
Anonymisation of geographical distance matrices via Lipschitz embedding
BACKGROUND: Anonymisation of spatially referenced data has received increasing attention in recent years. Whereas the research focus has been on the anonymisation of point locations, the disclosure risk arising from the publishing of inter-point distances and corresponding anonymisation methods have...
Autores principales: | Kroll, Martin, Schnell, Rainer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4704375/ https://www.ncbi.nlm.nih.gov/pubmed/26739310 http://dx.doi.org/10.1186/s12942-015-0031-7 |
Ejemplares similares
-
Data sharing in clinical trials – practical guidance on anonymising trial datasets
por: Keerie, Catriona, et al.
Publicado: (2018) -
Lipschitz functions
por: Cobzaş, Ştefan, et al.
Publicado: (2019) -
Classification of Lipschitz mappings
por: Piasecki, Lukasz
Publicado: (2013) -
Locational privacy-preserving distance computations with intersecting sets of randomly labeled grid points
por: Schnell, Rainer, et al.
Publicado: (2021) -
Bi-Lipschitz Parameterization of Surfaces
por: Bonk, M, et al.
Publicado: (2002)