Cargando…
Dynamic Factor Analysis for Multivariate Time Series: An Application to Cognitive Trajectories
We propose a dynamic factor model appropriate for large epidemiological studies and develop an estimation algorithm which can handle datasets with large number of subjects and short temporal information. The algorithm uses a two cycle iterative approach for parameter estimation in such a large datas...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4704801/ https://www.ncbi.nlm.nih.gov/pubmed/26753177 |
Sumario: | We propose a dynamic factor model appropriate for large epidemiological studies and develop an estimation algorithm which can handle datasets with large number of subjects and short temporal information. The algorithm uses a two cycle iterative approach for parameter estimation in such a large dataset. Each iteration consists of two distinct cycles, both following an EM algorithm approach. This iterative process will continue until convergence is achieved. We utilized a dataset from the National Alzheimer Coordinating Center (NACC) to estimate underlying measures of cognition based on a battery of observed neuropsychological tests. We assess the goodness of fit and the precision of the dynamic factor model estimators and compare it with a non-dynamic version in which temporal information is not used. The dynamic factor model is superior to a non-dynamic version with respect to fit statistics shown in simulation experiments. Moreover, it has increased power to detect differences in the rate of decline for a given sample size. |
---|