Cargando…
Basal Temperature Measurement Using a Multi-Sensor Armband in Australian Young Women: A Comparative Observational Study
BACKGROUND: The menstrual cycle is a key marker of health in women of reproductive age. Monitoring ovulation is useful in health studies involving young women. The upward shift in basal body temperature, which occurs shortly after ovulation and continues until the next menses, is a potentially usefu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4704931/ https://www.ncbi.nlm.nih.gov/pubmed/26441468 http://dx.doi.org/10.2196/mhealth.4263 |
Sumario: | BACKGROUND: The menstrual cycle is a key marker of health in women of reproductive age. Monitoring ovulation is useful in health studies involving young women. The upward shift in basal body temperature, which occurs shortly after ovulation and continues until the next menses, is a potentially useful marker of ovulation, which has been exploited in clinical and research settings. OBJECTIVE: We investigated the utility of BodyMedia SenseWear (BMSW) in monitoring ovulation in young women by analyzing the correlation and agreement of basal temperatures measured using BMSW and a digital oral thermometer. METHODS: Kappa statistics were used to determine the agreement in ovulation detection between the two devices, for each participant, under each form of analysis. Participants also completed an online questionnaire assessing the acceptability of both devices. RESULTS: We recruited 16 participants with 15 of them providing analyzable data (11 OCP non-users, 4 OCP users). Weak to moderate correlations were observed between thermometer and BMSW temperature measurements averaged over 5 different time intervals. However, no agreement between methods was observed using Bland-Altman plots. There was a significant difference in the range of temperatures that each device recorded (thermometer: 35.3-37.2°C, BMSW: 29.7-36.7°C) with BMSW temperatures significantly lower than thermometer temperatures: mean 34.6°C (SD 1.2) versus 36.4°C (SD 0.3) respectively, P<.001. Poor agreement was observed between devices under quantitative analysis of ovulation while fair agreement was observed under visual analysis. Under both quantitative and visual analysis, there was 0% agreement for evidence of ovulation. CONCLUSIONS: This study demonstrated the importance of evaluating biomeasures collected using mobile monitoring devices by comparison with standard methods. It revealed a relatively poor correlation between BMSW and oral thermometer temperature readings and suggested that BMSW is unlikely to detect an upward shift in basal body temperature. Participant behavior suggested poor compliance in the use of BMSW for basal temperature measurement and that the basal body temperature method may not be suitable for use in unselected samples of young women. There is a need for research tools for monitoring ovulation that are simple, self-administered, and inexpensive, yet appealing to young women. |
---|