Cargando…
The ATM- and ATR-related SCD domain is over-represented in proteins involved in nervous system development
ATM and ATR are cellular kinases with a well-characterized role in the DNA-damage response. Although the complete set of ATM/ATR targets is unknown, they often contain clusters of S/TQ motifs that constitute an SCD domain. In this study, we identified putative ATM/ATR targets that have a conserved S...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705472/ https://www.ncbi.nlm.nih.gov/pubmed/26743489 http://dx.doi.org/10.1038/srep19050 |
Sumario: | ATM and ATR are cellular kinases with a well-characterized role in the DNA-damage response. Although the complete set of ATM/ATR targets is unknown, they often contain clusters of S/TQ motifs that constitute an SCD domain. In this study, we identified putative ATM/ATR targets that have a conserved SCD domain across vertebrates. Using this approach, we have identified novel putative ATM/ATR targets in pathways known to be under direct control of these kinases. Our analysis has also unveiled significant enrichment of SCD-containing proteins in cellular pathways, such as vesicle trafficking and actin cytoskeleton, where a regulating role for ATM/ATR is either unknown or poorly understood, hinting at a much broader and overarching role for these kinases in the cell. Of particular note is the overrepresentation of conserved SCD-containing proteins involved in pathways related to neural development. This finding suggests that ATM/ATR could be directly involved in controlling this process, which may be linked to the adverse neurological effects observed in patients with mutations in ATM. |
---|