Cargando…
The musk chemical composition and microbiota of Chinese forest musk deer males
Male musk deer secrete musk from the musk gland located between their naval and genitals. Unmated male forest musk deer generate a greater amount of musk than mated males, potentially allowing them to attract a greater number of females. In this study, we used gas chromatography and mass spectrometr...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705530/ https://www.ncbi.nlm.nih.gov/pubmed/26744067 http://dx.doi.org/10.1038/srep18975 |
Sumario: | Male musk deer secrete musk from the musk gland located between their naval and genitals. Unmated male forest musk deer generate a greater amount of musk than mated males, potentially allowing them to attract a greater number of females. In this study, we used gas chromatography and mass spectrometry (GC/MS) to explore musk chemical composition of the musk pods of captive mated and unmated sexually mature Chinese forest musk deer and used next-generation sequencing to intensively survey the bacterial communities within them. Analysis of the chemical composition of the musk showed that unmated males have more muscone and cholesterol. Features of the musk16S rRNA gene showed that mated Chinese forest musk deer have both a greater Shannon diversity (p < 0.01) and a greater number of estimated operational taxonomic units than unmated ones; many bacterial genera were overrepresented in unmated Chinese forest musk deer males. Members of these genera might be involved in musk odor fermentation. PICRUSt analysis revealed that metabolic pathways such as aldosterone-regulated sodium reabsorption, metabolism of terpenoids and polyketides, flavone and flavonol biosynthesis, and isoflavonoid biosynthesis were enriched in the musk of unmated Chinese forest musk deer males. |
---|