Cargando…
Predicting Protein Model Quality from Sequence Alignments by Support Vector Machines
Assessing the quality of a protein structure model is essential for protein structure prediction. Here, we developed a Support Vector Machine (SVM) method to predict the quality score (GDT-TS score) of a protein structure model from the features extracted from the sequence alignment used to generate...
Autores principales: | Deng, Xin, Li, Jilong, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705550/ https://www.ncbi.nlm.nih.gov/pubmed/26752865 http://dx.doi.org/10.4172/jpb.S9-001 |
Ejemplares similares
-
Predicting and improving the protein sequence alignment quality by support vector regression
por: Lee, Minho, et al.
Publicado: (2007) -
SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines
por: Cao, Renzhi, et al.
Publicado: (2014) -
MSACompro: protein multiple sequence alignment using predicted secondary structure, solvent accessibility, and residue-residue contacts
por: Deng, Xin, et al.
Publicado: (2011) -
Prediction of Antimicrobial Peptides Based on Sequence Alignment and Support Vector Machine-Pairwise Algorithm Utilizing LZ-Complexity
por: Ng, Xin Yi, et al.
Publicado: (2015) -
Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition
por: Tamura, Takeyuki, et al.
Publicado: (2007)