Cargando…

Exploded view of higher order G-quadruplex structures through click-chemistry assisted single-molecule mechanical unfolding

Due to the long-range nature of high-order interactions between distal components in a biomolecule, transition dynamics of tertiary structures is often too complex to profile using conventional methods. Inspired by the exploded view in mechanical drawing, here, we used laser tweezers to mechanically...

Descripción completa

Detalles Bibliográficos
Autores principales: Selvam, Sangeetha, Yu, Zhongbo, Mao, Hanbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705664/
https://www.ncbi.nlm.nih.gov/pubmed/26626151
http://dx.doi.org/10.1093/nar/gkv1326
Descripción
Sumario:Due to the long-range nature of high-order interactions between distal components in a biomolecule, transition dynamics of tertiary structures is often too complex to profile using conventional methods. Inspired by the exploded view in mechanical drawing, here, we used laser tweezers to mechanically dissect high-order DNA structures into two constituting G-quadruplexes in the promoter of the human telomerase reverse transcriptase (hTERT) gene. Assisted with click-chemistry coupling, we sandwiched one G-quadruplex with two dsDNA handles while leaving the other unit free. Mechanical unfolding through these handles revealed transition dynamics of the targeted quadruplex in a native environment, which is named as native mechanical segmentation (NMS). Comparison between unfolding of an NMS construct and that of truncated G-quadruplex constructs revealed a quadruplex–quadruplex interaction with 2 kcal/mol stabilization energy. After mechanically targeting the two G-quadruplexes together, the same interaction was observed during the first unfolding step. The unfolding then proceeded through disrupting the weaker G-quadruplex at the 5′-end, followed by the stronger G-quadruplex at the 3′-end via various intermediates. Such a pecking order in unfolding well reflects the hierarchical nature of nucleic acid structures. With surgery-like precisions, we anticipate this NMS approach offers unprecedented perspective to decipher dynamic transitions in complex biomacromolecules.