Cargando…
B′-protein phosphatase 2A is a functional binding partner of delta-retroviral integrase
To establish infection, a retrovirus must insert a DNA copy of its RNA genome into host chromatin. This reaction is catalysed by the virally encoded enzyme integrase (IN) and is facilitated by viral genus-specific host factors. Herein, cellular serine/threonine protein phosphatase 2A (PP2A) is ident...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705670/ https://www.ncbi.nlm.nih.gov/pubmed/26657642 http://dx.doi.org/10.1093/nar/gkv1347 |
Sumario: | To establish infection, a retrovirus must insert a DNA copy of its RNA genome into host chromatin. This reaction is catalysed by the virally encoded enzyme integrase (IN) and is facilitated by viral genus-specific host factors. Herein, cellular serine/threonine protein phosphatase 2A (PP2A) is identified as a functional IN binding partner exclusive to δ-retroviruses, including human T cell lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2) and bovine leukaemia virus (BLV). PP2A is a heterotrimer composed of a scaffold, catalytic and one of any of four families of regulatory subunits, and the interaction is specific to the B′ family of the regulatory subunits. B′-PP2A and HTLV-1 IN display nuclear co-localization, and the B′ subunit stimulates concerted strand transfer activity of δ-retroviral INs in vitro. The protein–protein interaction interface maps to a patch of highly conserved residues on B′, which when mutated render B′ incapable of binding to and stimulating HTLV-1 and -2 IN strand transfer activity. |
---|