Cargando…
Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening
BACKGROUND: Fruit ripening is a complex developmental process that depends on a coordinated regulation of numerous genes, including ripening-related transcription factors (TFs), fruit-related microRNAs, DNA methylation and chromatin remodeling. It is known that various TFs, such as MADS-domain, MYB,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705811/ https://www.ncbi.nlm.nih.gov/pubmed/26742635 http://dx.doi.org/10.1186/s12864-015-2334-2 |
_version_ | 1782409087771738112 |
---|---|
author | Li, Shan Li, Ka Ju, Zheng Cao, Dongyan Fu, Daqi Zhu, Hongliang Zhu, Benzhong Luo, Yunbo |
author_facet | Li, Shan Li, Ka Ju, Zheng Cao, Dongyan Fu, Daqi Zhu, Hongliang Zhu, Benzhong Luo, Yunbo |
author_sort | Li, Shan |
collection | PubMed |
description | BACKGROUND: Fruit ripening is a complex developmental process that depends on a coordinated regulation of numerous genes, including ripening-related transcription factors (TFs), fruit-related microRNAs, DNA methylation and chromatin remodeling. It is known that various TFs, such as MADS-domain, MYB, AP2/ERF and SBP/SPL family proteins play key roles in modulating ripening. However, little attention has been given to members of the large NF-Y TF family in this regard, although genes in this family are known to have important functions in regulating plant growth, development, and abiotic or biotic stress responses. RESULTS: In this study, the evolutionary relationship between Arabidopsis thaliana and tomato (Solanum lycopersicum) NF-Y genes was examined to predict similarities in function. Furthermore, through gene expression analysis, 13 tomato NF-Y genes were identified as candidate regulators of fruit ripening. Functional studies involving suppression of NF-Y gene expression using virus induced gene silencing (VIGS) indicated that five NF-Y genes, including two members of the NF-YB subgroup (Solyc06g069310, Solyc07g065500) and three members of the NF-YA subgroup (Solyc01g087240, Solyc08g062210, Solyc11g065700), influence ripening. In addition, subcellular localization analyses using NF-Y proteins fused to a green fluorescent protein (GFP) reporter showed that the three NF-YA proteins accumulated in the nucleus, while the two NF-YB proteins were observed in both the nucleus and cytoplasm. CONCLUSIONS: In this study, we identified tomato NF-Y genes by analyzing the tomato genome sequence using bioinformatics approaches, and characterized their chromosomal distribution, gene structures, phylogenetic relationship and expression patterns. We also examined their biological functions in regulating tomato fruit via VIGS and subcellular localization analyses. The results indicated that five NF-Y transcription factors play roles in tomato fruit ripening. This information provides a platform for further investigation of their biological functions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2334-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4705811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47058112016-01-09 Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening Li, Shan Li, Ka Ju, Zheng Cao, Dongyan Fu, Daqi Zhu, Hongliang Zhu, Benzhong Luo, Yunbo BMC Genomics Research Article BACKGROUND: Fruit ripening is a complex developmental process that depends on a coordinated regulation of numerous genes, including ripening-related transcription factors (TFs), fruit-related microRNAs, DNA methylation and chromatin remodeling. It is known that various TFs, such as MADS-domain, MYB, AP2/ERF and SBP/SPL family proteins play key roles in modulating ripening. However, little attention has been given to members of the large NF-Y TF family in this regard, although genes in this family are known to have important functions in regulating plant growth, development, and abiotic or biotic stress responses. RESULTS: In this study, the evolutionary relationship between Arabidopsis thaliana and tomato (Solanum lycopersicum) NF-Y genes was examined to predict similarities in function. Furthermore, through gene expression analysis, 13 tomato NF-Y genes were identified as candidate regulators of fruit ripening. Functional studies involving suppression of NF-Y gene expression using virus induced gene silencing (VIGS) indicated that five NF-Y genes, including two members of the NF-YB subgroup (Solyc06g069310, Solyc07g065500) and three members of the NF-YA subgroup (Solyc01g087240, Solyc08g062210, Solyc11g065700), influence ripening. In addition, subcellular localization analyses using NF-Y proteins fused to a green fluorescent protein (GFP) reporter showed that the three NF-YA proteins accumulated in the nucleus, while the two NF-YB proteins were observed in both the nucleus and cytoplasm. CONCLUSIONS: In this study, we identified tomato NF-Y genes by analyzing the tomato genome sequence using bioinformatics approaches, and characterized their chromosomal distribution, gene structures, phylogenetic relationship and expression patterns. We also examined their biological functions in regulating tomato fruit via VIGS and subcellular localization analyses. The results indicated that five NF-Y transcription factors play roles in tomato fruit ripening. This information provides a platform for further investigation of their biological functions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2334-2) contains supplementary material, which is available to authorized users. BioMed Central 2016-01-07 /pmc/articles/PMC4705811/ /pubmed/26742635 http://dx.doi.org/10.1186/s12864-015-2334-2 Text en © Li et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Li, Shan Li, Ka Ju, Zheng Cao, Dongyan Fu, Daqi Zhu, Hongliang Zhu, Benzhong Luo, Yunbo Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening |
title | Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening |
title_full | Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening |
title_fullStr | Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening |
title_full_unstemmed | Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening |
title_short | Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening |
title_sort | genome-wide analysis of tomato nf-y factors and their role in fruit ripening |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705811/ https://www.ncbi.nlm.nih.gov/pubmed/26742635 http://dx.doi.org/10.1186/s12864-015-2334-2 |
work_keys_str_mv | AT lishan genomewideanalysisoftomatonfyfactorsandtheirroleinfruitripening AT lika genomewideanalysisoftomatonfyfactorsandtheirroleinfruitripening AT juzheng genomewideanalysisoftomatonfyfactorsandtheirroleinfruitripening AT caodongyan genomewideanalysisoftomatonfyfactorsandtheirroleinfruitripening AT fudaqi genomewideanalysisoftomatonfyfactorsandtheirroleinfruitripening AT zhuhongliang genomewideanalysisoftomatonfyfactorsandtheirroleinfruitripening AT zhubenzhong genomewideanalysisoftomatonfyfactorsandtheirroleinfruitripening AT luoyunbo genomewideanalysisoftomatonfyfactorsandtheirroleinfruitripening |