Cargando…
Machine learning models identify molecules active against the Ebola virus in vitro
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse inf...
Autores principales: | Ekins, Sean, Freundlich, Joel S., Clark, Alex M., Anantpadma, Manu, Davey, Robert A., Madrid, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706063/ https://www.ncbi.nlm.nih.gov/pubmed/26834994 http://dx.doi.org/10.12688/f1000research.7217.3 |
Ejemplares similares
-
Ebola Virus Bayesian Machine Learning Models Enable
New in Vitro Leads
por: Anantpadma, Manu, et al.
Publicado: (2019) -
Repurposing the antimalarial pyronaridine tetraphosphate to protect against Ebola virus infection
por: Lane, Thomas R., et al.
Publicado: (2019) -
Small molecules with antiviral activity against the Ebola virus
por: Litterman, Nadia, et al.
Publicado: (2015) -
A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus
por: Ekins, Sean, et al.
Publicado: (2014) -
Machine Learning Model Analysis and Data Visualization
with Small Molecules Tested in a Mouse Model of Mycobacterium
tuberculosis Infection (2014–2015)
por: Ekins, Sean, et al.
Publicado: (2016)