Cargando…

Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods

This data article describes a controlled, spiked proteomic dataset for which the “ground truth” of variant proteins is known. It is based on the LC-MS analysis of samples composed of a fixed background of yeast lysate and different spiked amounts of the UPS1 mixture of 48 recombinant proteins. It ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramus, Claire, Hovasse, Agnès, Marcellin, Marlène, Hesse, Anne-Marie, Mouton-Barbosa, Emmanuelle, Bouyssié, David, Vaca, Sebastian, Carapito, Christine, Chaoui, Karima, Bruley, Christophe, Garin, Jérôme, Cianférani, Sarah, Ferro, Myriam, Dorssaeler, Alain Van, Burlet-Schiltz, Odile, Schaeffer, Christine, Couté, Yohann, Gonzalez de Peredo, Anne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706616/
https://www.ncbi.nlm.nih.gov/pubmed/26862574
http://dx.doi.org/10.1016/j.dib.2015.11.063
_version_ 1782409190040403968
author Ramus, Claire
Hovasse, Agnès
Marcellin, Marlène
Hesse, Anne-Marie
Mouton-Barbosa, Emmanuelle
Bouyssié, David
Vaca, Sebastian
Carapito, Christine
Chaoui, Karima
Bruley, Christophe
Garin, Jérôme
Cianférani, Sarah
Ferro, Myriam
Dorssaeler, Alain Van
Burlet-Schiltz, Odile
Schaeffer, Christine
Couté, Yohann
Gonzalez de Peredo, Anne
author_facet Ramus, Claire
Hovasse, Agnès
Marcellin, Marlène
Hesse, Anne-Marie
Mouton-Barbosa, Emmanuelle
Bouyssié, David
Vaca, Sebastian
Carapito, Christine
Chaoui, Karima
Bruley, Christophe
Garin, Jérôme
Cianférani, Sarah
Ferro, Myriam
Dorssaeler, Alain Van
Burlet-Schiltz, Odile
Schaeffer, Christine
Couté, Yohann
Gonzalez de Peredo, Anne
author_sort Ramus, Claire
collection PubMed
description This data article describes a controlled, spiked proteomic dataset for which the “ground truth” of variant proteins is known. It is based on the LC-MS analysis of samples composed of a fixed background of yeast lysate and different spiked amounts of the UPS1 mixture of 48 recombinant proteins. It can be used to objectively evaluate bioinformatic pipelines for label-free quantitative analysis, and their ability to detect variant proteins with good sensitivity and low false discovery rate in large-scale proteomic studies. More specifically, it can be useful for tuning software tools parameters, but also testing new algorithms for label-free quantitative analysis, or for evaluation of downstream statistical methods. The raw MS files can be downloaded from ProteomeXchange with identifier PXD001819. Starting from some raw files of this dataset, we also provide here some processed data obtained through various bioinformatics tools (including MaxQuant, Skyline, MFPaQ, IRMa-hEIDI and Scaffold) in different workflows, to exemplify the use of such data in the context of software benchmarking, as discussed in details in the accompanying manuscript [1]. The experimental design used here for data processing takes advantage of the different spike levels introduced in the samples composing the dataset, and processed data are merged in a single file to facilitate the evaluation and illustration of software tools results for the detection of variant proteins with different absolute expression levels and fold change values.
format Online
Article
Text
id pubmed-4706616
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-47066162016-02-09 Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods Ramus, Claire Hovasse, Agnès Marcellin, Marlène Hesse, Anne-Marie Mouton-Barbosa, Emmanuelle Bouyssié, David Vaca, Sebastian Carapito, Christine Chaoui, Karima Bruley, Christophe Garin, Jérôme Cianférani, Sarah Ferro, Myriam Dorssaeler, Alain Van Burlet-Schiltz, Odile Schaeffer, Christine Couté, Yohann Gonzalez de Peredo, Anne Data Brief Data Article This data article describes a controlled, spiked proteomic dataset for which the “ground truth” of variant proteins is known. It is based on the LC-MS analysis of samples composed of a fixed background of yeast lysate and different spiked amounts of the UPS1 mixture of 48 recombinant proteins. It can be used to objectively evaluate bioinformatic pipelines for label-free quantitative analysis, and their ability to detect variant proteins with good sensitivity and low false discovery rate in large-scale proteomic studies. More specifically, it can be useful for tuning software tools parameters, but also testing new algorithms for label-free quantitative analysis, or for evaluation of downstream statistical methods. The raw MS files can be downloaded from ProteomeXchange with identifier PXD001819. Starting from some raw files of this dataset, we also provide here some processed data obtained through various bioinformatics tools (including MaxQuant, Skyline, MFPaQ, IRMa-hEIDI and Scaffold) in different workflows, to exemplify the use of such data in the context of software benchmarking, as discussed in details in the accompanying manuscript [1]. The experimental design used here for data processing takes advantage of the different spike levels introduced in the samples composing the dataset, and processed data are merged in a single file to facilitate the evaluation and illustration of software tools results for the detection of variant proteins with different absolute expression levels and fold change values. Elsevier 2015-12-17 /pmc/articles/PMC4706616/ /pubmed/26862574 http://dx.doi.org/10.1016/j.dib.2015.11.063 Text en © 2015 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Data Article
Ramus, Claire
Hovasse, Agnès
Marcellin, Marlène
Hesse, Anne-Marie
Mouton-Barbosa, Emmanuelle
Bouyssié, David
Vaca, Sebastian
Carapito, Christine
Chaoui, Karima
Bruley, Christophe
Garin, Jérôme
Cianférani, Sarah
Ferro, Myriam
Dorssaeler, Alain Van
Burlet-Schiltz, Odile
Schaeffer, Christine
Couté, Yohann
Gonzalez de Peredo, Anne
Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods
title Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods
title_full Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods
title_fullStr Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods
title_full_unstemmed Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods
title_short Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods
title_sort spiked proteomic standard dataset for testing label-free quantitative software and statistical methods
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706616/
https://www.ncbi.nlm.nih.gov/pubmed/26862574
http://dx.doi.org/10.1016/j.dib.2015.11.063
work_keys_str_mv AT ramusclaire spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT hovasseagnes spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT marcellinmarlene spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT hesseannemarie spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT moutonbarbosaemmanuelle spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT bouyssiedavid spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT vacasebastian spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT carapitochristine spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT chaouikarima spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT bruleychristophe spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT garinjerome spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT cianferanisarah spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT ferromyriam spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT dorssaeleralainvan spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT burletschiltzodile spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT schaefferchristine spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT couteyohann spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods
AT gonzalezdeperedoanne spikedproteomicstandarddatasetfortestinglabelfreequantitativesoftwareandstatisticalmethods