Cargando…
Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network
Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lea...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706884/ https://www.ncbi.nlm.nih.gov/pubmed/26819590 http://dx.doi.org/10.1155/2016/7129376 |
_version_ | 1782409226451156992 |
---|---|
author | Şimşir, Mehmet Bayır, Raif Uyaroğlu, Yılmaz |
author_facet | Şimşir, Mehmet Bayır, Raif Uyaroğlu, Yılmaz |
author_sort | Şimşir, Mehmet |
collection | PubMed |
description | Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured. |
format | Online Article Text |
id | pubmed-4706884 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-47068842016-01-27 Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network Şimşir, Mehmet Bayır, Raif Uyaroğlu, Yılmaz Comput Intell Neurosci Research Article Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured. Hindawi Publishing Corporation 2016 2015-12-27 /pmc/articles/PMC4706884/ /pubmed/26819590 http://dx.doi.org/10.1155/2016/7129376 Text en Copyright © 2016 Mehmet Şimşir et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Şimşir, Mehmet Bayır, Raif Uyaroğlu, Yılmaz Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network |
title | Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network |
title_full | Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network |
title_fullStr | Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network |
title_full_unstemmed | Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network |
title_short | Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network |
title_sort | real-time monitoring and fault diagnosis of a low power hub motor using feedforward neural network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706884/ https://www.ncbi.nlm.nih.gov/pubmed/26819590 http://dx.doi.org/10.1155/2016/7129376 |
work_keys_str_mv | AT simsirmehmet realtimemonitoringandfaultdiagnosisofalowpowerhubmotorusingfeedforwardneuralnetwork AT bayırraif realtimemonitoringandfaultdiagnosisofalowpowerhubmotorusingfeedforwardneuralnetwork AT uyarogluyılmaz realtimemonitoringandfaultdiagnosisofalowpowerhubmotorusingfeedforwardneuralnetwork |