Cargando…
A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface
We evaluate the possibility of application of combination of classifiers using fuzzy measures and integrals to Brain-Computer Interface (BCI) based on electroencephalography. In particular, we present an ensemble method that can be applied to a variety of systems and evaluate it in the context of a...
Autores principales: | Cavrini, Francesco, Bianchi, Luigi, Quitadamo, Lucia Rita, Saggio, Giovanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706894/ https://www.ncbi.nlm.nih.gov/pubmed/26819595 http://dx.doi.org/10.1155/2016/9845980 |
Ejemplares similares
-
Overlapped Partitioning for Ensemble Classifiers of P300-Based Brain-Computer Interfaces
por: Onishi, Akinari, et al.
Publicado: (2014) -
Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
por: Halder, Sebastian, et al.
Publicado: (2013) -
Psychological Predictors of Visual and Auditory P300 Brain-Computer Interface Performance
por: Hammer, Eva M., et al.
Publicado: (2018) -
A P300 Brain-Computer Interface With a Reduced Visual Field
por: Kirasirova, Luiza, et al.
Publicado: (2020) -
A Tactile P300 Brain-Computer Interface
por: Brouwer, Anne-Marie, et al.
Publicado: (2010)