Cargando…

Taking Sides: An Integrative Review of the Impact of Laterality and Polarity on Efficacy of Therapeutic Transcranial Direct Current Stimulation for Anomia in Chronic Poststroke Aphasia

Anomia is a frequent and persistent symptom of poststroke aphasia, resulting from damage to areas of the brain involved in language production. Cortical neuroplasticity plays a significant role in language recovery following stroke and can be facilitated by behavioral speech and language therapy. Re...

Descripción completa

Detalles Bibliográficos
Autores principales: Sandars, Margaret, Cloutman, Lauren, Woollams, Anna M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706968/
https://www.ncbi.nlm.nih.gov/pubmed/26819777
http://dx.doi.org/10.1155/2016/8428256
Descripción
Sumario:Anomia is a frequent and persistent symptom of poststroke aphasia, resulting from damage to areas of the brain involved in language production. Cortical neuroplasticity plays a significant role in language recovery following stroke and can be facilitated by behavioral speech and language therapy. Recent research suggests that complementing therapy with neurostimulation techniques may enhance functional gains, even amongst those with chronic aphasia. The current review focuses on the use of transcranial Direct Current Stimulation (tDCS) as an adjunct to naming therapy for individuals with chronic poststroke aphasia. Our survey of the literature indicates that combining therapy with anodal (excitatory) stimulation to the left hemisphere and/or cathodal (inhibitory) stimulation to the right hemisphere can increase both naming accuracy and speed when compared to the effects of therapy alone. However, the benefits of tDCS as a complement to therapy have not been yet systematically investigated with respect to site and polarity of stimulation. Recommendations for future research to help determine optimal protocols for combined therapy and tDCS are outlined.