Cargando…
Controlling Individuals Growth in Semantic Genetic Programming through Elitist Replacement
In 2012, Moraglio and coauthors introduced new genetic operators for Genetic Programming, called geometric semantic genetic operators. They have the very interesting advantage of inducing a unimodal error surface for any supervised learning problem. At the same time, they have the important drawback...
Autores principales: | Castelli, Mauro, Vanneschi, Leonardo, Popovič, Aleš |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707023/ https://www.ncbi.nlm.nih.gov/pubmed/27057158 http://dx.doi.org/10.1155/2016/8326760 |
Ejemplares similares
-
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer
por: Castelli, Mauro, et al.
Publicado: (2015) -
Pejorative Drift of Medical Words: Geriatric, Elitist
por: Baron, J H
Publicado: (1994) -
Genetic algorithm with a crossover elitist preservation mechanism for protein–ligand docking
por: Guan, Boxin, et al.
Publicado: (2017) -
Path Planning Algorithm for Multi-Locomotion Robot Based on Multi-Objective Genetic Algorithm with Elitist Strategy
por: Liu, Chong, et al.
Publicado: (2022) -
An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization
por: Yang, Zhen-Lun, et al.
Publicado: (2015)