Cargando…

Clopidogrel Protects Endothelium by Hindering TNFα-Induced VCAM-1 Expression through CaMKKβ/AMPK/Nrf2 Pathway

Clopidogrel (INN), an oral antiplatelet drug, has been revealed to have a number of biological properties, for instance, anti-inflammation and antioxidation. Oxidative stress plays an imperative role in inflammation, diabetes mellitus, atherosclerosis, and cancer. In the present study, human aortic...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Huabing, Zhao, Pengjun, Tian, Shiliu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707324/
https://www.ncbi.nlm.nih.gov/pubmed/26824050
http://dx.doi.org/10.1155/2016/9128050
Descripción
Sumario:Clopidogrel (INN), an oral antiplatelet drug, has been revealed to have a number of biological properties, for instance, anti-inflammation and antioxidation. Oxidative stress plays an imperative role in inflammation, diabetes mellitus, atherosclerosis, and cancer. In the present study, human aortic endothelial cells (HAECs) were employed to explore the anti-inflammatory activity of INN. INN reduced TNFα-induced reactive oxygen species (ROS) generation and time-dependently prompted the expression and activity of heme oxygenase 1 (HO-1). Cellular glutathione (GSH) levels were augmented by INN. shHO-1 blocked the INN suppression of TNFα-induced HL-60 cell adhesion. The CaMKKβ/AMPK pathway and Nrf2 transcriptional factor were implicated in the induction of HO-1 by INN. Additionally, TNFα dramatically augmented VCAM-1 expression at protein and mRNA levels. INN treatment strikingly repressed TNFα-induced expression of VCAM-1 and HL-60 cell adhesion. Compound C, an AMPK inhibitor, and shNrf2 abolished TNFα-induced expression of VCAM-1 and HL-60 cell adhesion. Our data suggest that INN diminishes TNFα-stimulated VCAM-1 expression at least in part via HO-1 induction, which is CaMKKβ/AMPK pathway-dependent.