Cargando…
Lipid Lowering Effects of Hydroalcoholic Extract of Anethum graveolens L. and Dill Tablet in High Cholesterol Fed Hamsters
Objective. This study was aimed to determine the effect of Anethum graveolens extract and Anethum graveolens (dill) tablet on lipid profile, liver enzymes, and gene expression and enzymatic activity of HMG-CoA reductase in high cholesterol fed hamsters. Materials and Methods. Golden Syrian male hams...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707388/ https://www.ncbi.nlm.nih.gov/pubmed/26823981 http://dx.doi.org/10.1155/2015/958560 |
Sumario: | Objective. This study was aimed to determine the effect of Anethum graveolens extract and Anethum graveolens (dill) tablet on lipid profile, liver enzymes, and gene expression and enzymatic activity of HMG-CoA reductase in high cholesterol fed hamsters. Materials and Methods. Golden Syrian male hamsters (130 ± 10 g) were randomly divided into 6 groups (n = 6) and received daily the following: group 1 received chow + 2% cholesterol + 0.5% cholic acid (HCD), groups 2 and 3 received HCD diet plus 100 and 200 mg/kg hydroalcoholic extract of dill, respectively, and groups 4 and 5 received HCD diet plus 100 and 200 mg/kg dill tablet, respectively. Group 6 received only chow. After 1 month feeding serum biochemical factors were determined. HMG-CoA reductase mRNA level was measured (real-time PCR) and its activity was determined spectrophotometrically. Results. Compared with hypercholesterolemic group 1, lipid profile, blood glucose, and liver enzymes significantly decreased in all dill tablet or dill extract treated groups (p < 0.05). The changes in HMG-CoA reductase gene expression level and enzyme activity significantly reduced in animals that received 200 mg/kg of extract or tablet. Conclusion. Dill extract and dill tablet showed potential hypocholesterolemic properties in hamsters by inhibition of HMG-CoA reductase activity. |
---|