Cargando…

Liquid crystal phases of two-dimensional dipolar gases and Berezinskii-Kosterlitz-Thouless melting

Liquid crystals are phases of matter intermediate between crystals and liquids. Whereas classical liquid crystals have been known for a long time and are used in electro-optical displays, much less is known about their quantum counterparts. There is growing evidence that quantum liquid crystals play...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Zhigang, Block, Jens K., Bruun, Georg M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707468/
https://www.ncbi.nlm.nih.gov/pubmed/26750156
http://dx.doi.org/10.1038/srep19038
Descripción
Sumario:Liquid crystals are phases of matter intermediate between crystals and liquids. Whereas classical liquid crystals have been known for a long time and are used in electro-optical displays, much less is known about their quantum counterparts. There is growing evidence that quantum liquid crystals play a central role in many electron systems including high temperature superconductors, but a quantitative understanding is lacking due to disorder and other complications. Here, we analyse the quantum phase diagram of a two-dimensional dipolar gas, which exhibits stripe, nematic and supersolid phases. We calculate the stiffness constants determining the stability of the nematic and stripe phases, and the melting of the stripes set by the proliferation of topological defects is analysed microscopically. Our results for the critical temperatures of these phases demonstrate that a controlled study of the interplay between quantum liquid and superfluid phases is within experimental reach for the first time, using dipolar gases.