Cargando…
The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype–phenotype maps
Biological information is stored in DNA, RNA and protein sequences, which can be understood as genotypes that are translated into phenotypes. The properties of genotype–phenotype (GP) maps have been studied in great detail for RNA secondary structure. These include a highly biased distribution of ge...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707848/ https://www.ncbi.nlm.nih.gov/pubmed/26609063 http://dx.doi.org/10.1098/rsif.2015.0724 |
Sumario: | Biological information is stored in DNA, RNA and protein sequences, which can be understood as genotypes that are translated into phenotypes. The properties of genotype–phenotype (GP) maps have been studied in great detail for RNA secondary structure. These include a highly biased distribution of genotypes per phenotype, negative correlation of genotypic robustness and evolvability, positive correlation of phenotypic robustness and evolvability, shape-space covering, and a roughly logarithmic scaling of phenotypic robustness with phenotypic frequency. More recently similar properties have been discovered in other GP maps, suggesting that they may be fundamental to biological GP maps, in general, rather than specific to the RNA secondary structure map. Here we propose that the above properties arise from the fundamental organization of biological information into ‘constrained' and ‘unconstrained' sequences, in the broadest possible sense. As ‘constrained' we describe sequences that affect the phenotype more immediately, and are therefore more sensitive to mutations, such as, e.g. protein-coding DNA or the stems in RNA secondary structure. ‘Unconstrained' sequences, on the other hand, can mutate more freely without affecting the phenotype, such as, e.g. intronic or intergenic DNA or the loops in RNA secondary structure. To test our hypothesis we consider a highly simplified GP map that has genotypes with ‘coding' and ‘non-coding' parts. We term this the Fibonacci GP map, as it is equivalent to the Fibonacci code in information theory. Despite its simplicity the Fibonacci GP map exhibits all the above properties of much more complex and biologically realistic GP maps. These properties are therefore likely to be fundamental to many biological GP maps. |
---|