Cargando…
Angiogenic factors, bladder neuroplasticity and interstitial cystitis—new pathobiological insights
Vascular endothelial growth factor (VEGF) is essential for normal embryonic development, and maintenance of adult vascular function. Originally described as a vascular permeability factor, VEGF alters tight cell junctions and contributes to maintenance of bladder permeability. VEGF and its receptors...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708555/ https://www.ncbi.nlm.nih.gov/pubmed/26816854 http://dx.doi.org/10.3978/j.issn.2223-4683.2015.08.05 |
Sumario: | Vascular endothelial growth factor (VEGF) is essential for normal embryonic development, and maintenance of adult vascular function. Originally described as a vascular permeability factor, VEGF alters tight cell junctions and contributes to maintenance of bladder permeability. VEGF and its receptors are not only expressed in bladder blood vessels but also in apical cells and intramural ganglia. VEGF receptors are fundamentally altered by inflammation and bladder diseases such as interstitial cystitis (IC). Experimental results indicate that VEGF exerts direct effects on bladder nerve density and function. Regardless of the etiology or initiating cause for IC, it is hypothesized that the urinary bladder responds to injury by increasing the production of VEGF that acts initially as a survival mechanism. However, VEGF also has the capacity to increase vascular permeability leading to glomerulations, edema, and inflammation. Moreover, due to elevated numbers of VEGF receptors in the urothelium, the increased levels of VEGF further increase bladder permeability and establish a vicioCus cycle of disease pathophysiology. |
---|