Cargando…

Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis

The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a sur...

Descripción completa

Detalles Bibliográficos
Autor principal: Galtier, Nicolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709115/
https://www.ncbi.nlm.nih.gov/pubmed/26752180
http://dx.doi.org/10.1371/journal.pgen.1005774
_version_ 1782409599298568192
author Galtier, Nicolas
author_facet Galtier, Nicolas
author_sort Galtier, Nicolas
collection PubMed
description The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a surprising diversity of patterns, with some species (e.g. Drosophila) experiencing a very high adaptive rate, while other (e.g. humans) are dominated by nearly-neutral processes. It has been suggested that this discrepancy reflects between-species differences in effective population size. Published studies, however, were mainly focused on model organisms, and relied on disparate data sets and methodologies, so that an overview of the prevalence of adaptive protein evolution in nature is currently lacking. Here we extend existing estimators of the amino-acid adaptive rate by explicitly modelling the effect of favourable mutations on non-synonymous polymorphism patterns, and we apply these methods to a newly-built, homogeneous data set of 44 non-model animal species pairs. Data analysis uncovers a major contribution of adaptive evolution to the amino-acid substitution process across all major metazoan phyla—with the notable exception of humans and primates. The proportion of adaptive amino-acid substitution is found to be positively correlated to species effective population size. This relationship, however, appears to be primarily driven by a decreased rate of nearly-neutral amino-acid substitution because of more efficient purifying selection in large populations. Our results reveal that adaptive processes dominate the evolution of proteins in most animal species, but do not corroborate the hypothesis that adaptive substitutions accumulate at a faster rate in large populations. Implications regarding the factors influencing the rate of adaptive evolution and positive selection detection in humans vs. other organisms are discussed.
format Online
Article
Text
id pubmed-4709115
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47091152016-01-15 Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis Galtier, Nicolas PLoS Genet Research Article The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a surprising diversity of patterns, with some species (e.g. Drosophila) experiencing a very high adaptive rate, while other (e.g. humans) are dominated by nearly-neutral processes. It has been suggested that this discrepancy reflects between-species differences in effective population size. Published studies, however, were mainly focused on model organisms, and relied on disparate data sets and methodologies, so that an overview of the prevalence of adaptive protein evolution in nature is currently lacking. Here we extend existing estimators of the amino-acid adaptive rate by explicitly modelling the effect of favourable mutations on non-synonymous polymorphism patterns, and we apply these methods to a newly-built, homogeneous data set of 44 non-model animal species pairs. Data analysis uncovers a major contribution of adaptive evolution to the amino-acid substitution process across all major metazoan phyla—with the notable exception of humans and primates. The proportion of adaptive amino-acid substitution is found to be positively correlated to species effective population size. This relationship, however, appears to be primarily driven by a decreased rate of nearly-neutral amino-acid substitution because of more efficient purifying selection in large populations. Our results reveal that adaptive processes dominate the evolution of proteins in most animal species, but do not corroborate the hypothesis that adaptive substitutions accumulate at a faster rate in large populations. Implications regarding the factors influencing the rate of adaptive evolution and positive selection detection in humans vs. other organisms are discussed. Public Library of Science 2016-01-11 /pmc/articles/PMC4709115/ /pubmed/26752180 http://dx.doi.org/10.1371/journal.pgen.1005774 Text en © 2016 Nicolas Galtier http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
spellingShingle Research Article
Galtier, Nicolas
Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis
title Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis
title_full Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis
title_fullStr Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis
title_full_unstemmed Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis
title_short Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis
title_sort adaptive protein evolution in animals and the effective population size hypothesis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709115/
https://www.ncbi.nlm.nih.gov/pubmed/26752180
http://dx.doi.org/10.1371/journal.pgen.1005774
work_keys_str_mv AT galtiernicolas adaptiveproteinevolutioninanimalsandtheeffectivepopulationsizehypothesis