Cargando…

FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1

The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification ha...

Descripción completa

Detalles Bibliográficos
Autores principales: Scholz, Carsten C., Rodriguez, Javier, Pickel, Christina, Burr, Stephen, Fabrizio, Jacqueline-alba, Nolan, Karen A., Spielmann, Patrick, Cavadas, Miguel A. S., Crifo, Bianca, Halligan, Doug N., Nathan, James A., Peet, Daniel J., Wenger, Roland H., Von Kriegsheim, Alex, Cummins, Eoin P., Taylor, Cormac T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709136/
https://www.ncbi.nlm.nih.gov/pubmed/26752685
http://dx.doi.org/10.1371/journal.pbio.1002347
_version_ 1782409602507210752
author Scholz, Carsten C.
Rodriguez, Javier
Pickel, Christina
Burr, Stephen
Fabrizio, Jacqueline-alba
Nolan, Karen A.
Spielmann, Patrick
Cavadas, Miguel A. S.
Crifo, Bianca
Halligan, Doug N.
Nathan, James A.
Peet, Daniel J.
Wenger, Roland H.
Von Kriegsheim, Alex
Cummins, Eoin P.
Taylor, Cormac T.
author_facet Scholz, Carsten C.
Rodriguez, Javier
Pickel, Christina
Burr, Stephen
Fabrizio, Jacqueline-alba
Nolan, Karen A.
Spielmann, Patrick
Cavadas, Miguel A. S.
Crifo, Bianca
Halligan, Doug N.
Nathan, James A.
Peet, Daniel J.
Wenger, Roland H.
Von Kriegsheim, Alex
Cummins, Eoin P.
Taylor, Cormac T.
author_sort Scholz, Carsten C.
collection PubMed
description The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.
format Online
Article
Text
id pubmed-4709136
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47091362016-01-15 FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1 Scholz, Carsten C. Rodriguez, Javier Pickel, Christina Burr, Stephen Fabrizio, Jacqueline-alba Nolan, Karen A. Spielmann, Patrick Cavadas, Miguel A. S. Crifo, Bianca Halligan, Doug N. Nathan, James A. Peet, Daniel J. Wenger, Roland H. Von Kriegsheim, Alex Cummins, Eoin P. Taylor, Cormac T. PLoS Biol Research Article The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit. Public Library of Science 2016-01-11 /pmc/articles/PMC4709136/ /pubmed/26752685 http://dx.doi.org/10.1371/journal.pbio.1002347 Text en © 2016 Scholz et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
spellingShingle Research Article
Scholz, Carsten C.
Rodriguez, Javier
Pickel, Christina
Burr, Stephen
Fabrizio, Jacqueline-alba
Nolan, Karen A.
Spielmann, Patrick
Cavadas, Miguel A. S.
Crifo, Bianca
Halligan, Doug N.
Nathan, James A.
Peet, Daniel J.
Wenger, Roland H.
Von Kriegsheim, Alex
Cummins, Eoin P.
Taylor, Cormac T.
FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1
title FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1
title_full FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1
title_fullStr FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1
title_full_unstemmed FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1
title_short FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1
title_sort fih regulates cellular metabolism through hydroxylation of the deubiquitinase otub1
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709136/
https://www.ncbi.nlm.nih.gov/pubmed/26752685
http://dx.doi.org/10.1371/journal.pbio.1002347
work_keys_str_mv AT scholzcarstenc fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT rodriguezjavier fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT pickelchristina fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT burrstephen fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT fabriziojacquelinealba fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT nolankarena fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT spielmannpatrick fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT cavadasmiguelas fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT crifobianca fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT halligandougn fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT nathanjamesa fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT peetdanielj fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT wengerrolandh fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT vonkriegsheimalex fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT cumminseoinp fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1
AT taylorcormact fihregulatescellularmetabolismthroughhydroxylationofthedeubiquitinaseotub1