Cargando…
iMiRNA-SSF: Improving the Identification of MicroRNA Precursors by Combining Negative Sets with Different Distributions
The identification of microRNA precursors (pre-miRNAs) helps in understanding regulator in biological processes. The performance of computational predictors depends on their training sets, in which the negative sets play an important role. In this regard, we investigated the influence of benchmark d...
Autores principales: | Chen, Junjie, Wang, Xiaolong, Liu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709562/ https://www.ncbi.nlm.nih.gov/pubmed/26753561 http://dx.doi.org/10.1038/srep19062 |
Ejemplares similares
-
Identification of Real MicroRNA Precursors with a Pseudo Structure Status Composition Approach
por: Liu, Bin, et al.
Publicado: (2015) -
Prediction of MicroRNA Precursors Using Parsimonious Feature Sets
por: Stepanowsky, Petra, et al.
Publicado: (2014) -
Prediction of viral microRNA precursors based on human microRNA precursor sequence and structural features
por: Kumar, Shiva, et al.
Publicado: (2009) -
SAGE detects microRNA precursors
por: Ge, Xijin, et al.
Publicado: (2006) -
miR-BAG: Bagging Based Identification of MicroRNA Precursors
por: Jha, Ashwani, et al.
Publicado: (2012)