Cargando…
Self-Trained LMT for Semisupervised Learning
The most important asset of semisupervised classification methods is the use of available unlabeled data combined with a clearly smaller set of labeled examples, so as to increase the classification accuracy compared with the default procedure of supervised methods, which on the other hand use only...
Autores principales: | Fazakis, Nikos, Karlos, Stamatis, Kotsiantis, Sotiris, Sgarbas, Kyriakos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709606/ https://www.ncbi.nlm.nih.gov/pubmed/26839531 http://dx.doi.org/10.1155/2016/3057481 |
Ejemplares similares
-
Combination of Active Learning and Semi-Supervised Learning under a Self-Training Scheme
por: Fazakis, Nikos, et al.
Publicado: (2019) -
Online Coregularization for Multiview Semisupervised Learning
por: Sun, Boliang, et al.
Publicado: (2013) -
Semisupervised Semantic Segmentation with Mutual Correction Learning
por: Xiao, Yifan, et al.
Publicado: (2022) -
Artificial Intelligence-Based Semisupervised Self-Training Algorithm in Pathological Tissue Image Segmentation
por: Li, Qun, et al.
Publicado: (2022) -
A Semisupervised Learning Scheme with Self-Paced Learning for Classifying Breast Cancer Histopathological Images
por: Asare, Sarpong Kwadwo, et al.
Publicado: (2020)