Cargando…
Long Read Alignment with Parallel MapReduce Cloud Platform
Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709609/ https://www.ncbi.nlm.nih.gov/pubmed/26839887 http://dx.doi.org/10.1155/2015/807407 |
_version_ | 1782409672733491200 |
---|---|
author | Al-Absi, Ahmed Abdulhakim Kang, Dae-Ki |
author_facet | Al-Absi, Ahmed Abdulhakim Kang, Dae-Ki |
author_sort | Al-Absi, Ahmed Abdulhakim |
collection | PubMed |
description | Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. |
format | Online Article Text |
id | pubmed-4709609 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-47096092016-02-02 Long Read Alignment with Parallel MapReduce Cloud Platform Al-Absi, Ahmed Abdulhakim Kang, Dae-Ki Biomed Res Int Research Article Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. Hindawi Publishing Corporation 2015 2015-12-29 /pmc/articles/PMC4709609/ /pubmed/26839887 http://dx.doi.org/10.1155/2015/807407 Text en Copyright © 2015 A. A. Al-Absi and D.-K. Kang. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Al-Absi, Ahmed Abdulhakim Kang, Dae-Ki Long Read Alignment with Parallel MapReduce Cloud Platform |
title | Long Read Alignment with Parallel MapReduce Cloud Platform |
title_full | Long Read Alignment with Parallel MapReduce Cloud Platform |
title_fullStr | Long Read Alignment with Parallel MapReduce Cloud Platform |
title_full_unstemmed | Long Read Alignment with Parallel MapReduce Cloud Platform |
title_short | Long Read Alignment with Parallel MapReduce Cloud Platform |
title_sort | long read alignment with parallel mapreduce cloud platform |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709609/ https://www.ncbi.nlm.nih.gov/pubmed/26839887 http://dx.doi.org/10.1155/2015/807407 |
work_keys_str_mv | AT alabsiahmedabdulhakim longreadalignmentwithparallelmapreducecloudplatform AT kangdaeki longreadalignmentwithparallelmapreducecloudplatform |