Cargando…
The multitude of molecular analyses in cancer: the opening of Pandora’s box
The availability of large amounts of molecular data of unprecedented depth and width has instigated new paths of interdisciplinary activity in cancer research. Translation of such information to allow its optimal use in cancer therapy will require molecular biologists to embrace statistical and comp...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709983/ https://www.ncbi.nlm.nih.gov/pubmed/25316146 http://dx.doi.org/10.1186/s13059-014-0447-6 |
Sumario: | The availability of large amounts of molecular data of unprecedented depth and width has instigated new paths of interdisciplinary activity in cancer research. Translation of such information to allow its optimal use in cancer therapy will require molecular biologists to embrace statistical and computational concepts and models. Progress in science has been and should be driven by our innate curiosity. This is the human quality that led Pandora to open the forbidden box, and like her, we do not know the nature or consequences of the output resulting from our actions. Throughout history, ground-breaking scientific achievements have been closely linked to advances in technology. The microscope and the telescope are examples of inventions that profoundly increased the amount of observable features that further led to paradigmatic shifts in our understanding of life and the Universe. In cell biology, the microscope revealed details of different types of tissue and their cellular composition; it revealed cells, their structures and their ability to divide, develop and die. Further, the molecular compositions of individual cell types were revealed gradually by generations of scientists. For each level of insight gained, new mathematical and statistical descriptive and analytical tools were needed (Figure 1a). The integration of knowledge of ever-increasing depth and width in order to develop useful therapies that can prevent and cure diseases such as cancer will continue to require the joint effort of scientists in biology, medicine, statistics, mathematics and computation. Here, we discuss some major challenges that lie ahead of us and why we believe that a deeper integration of biology and medicine with mathematics and statistics is required to gain the most from the diverse and extensive body of data now being generated. We also argue that to take full advantage of current technological opportunities, we must explore biomarkers using clinical studies that are optimally designed for this purpose. The need for a tight interdisciplinary collaboration has never been stronger. |
---|