Cargando…
Modulation of receptor dynamics by the regulator of G protein signaling Sst2
G protein–coupled receptor (GPCR) signaling is fundamental to physiological processes such as vision, the immune response, and wound healing. In the budding yeast Saccharomyces cerevisiae, GPCRs detect and respond to gradients of pheromone during mating. After pheromone stimulation, the GPCR Ste2 is...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710242/ https://www.ncbi.nlm.nih.gov/pubmed/26310439 http://dx.doi.org/10.1091/mbc.E14-12-1635 |
Sumario: | G protein–coupled receptor (GPCR) signaling is fundamental to physiological processes such as vision, the immune response, and wound healing. In the budding yeast Saccharomyces cerevisiae, GPCRs detect and respond to gradients of pheromone during mating. After pheromone stimulation, the GPCR Ste2 is removed from the cell membrane, and new receptors are delivered to the growing edge. The regulator of G protein signaling (RGS) protein Sst2 acts by accelerating GTP hydrolysis and facilitating pathway desensitization. Sst2 is also known to interact with the receptor Ste2. Here we show that Sst2 is required for proper receptor recovery at the growing edge of pheromone-stimulated cells. Mathematical modeling suggested pheromone-induced synthesis of Sst2 together with its interaction with the receptor function to reestablish a receptor pool at the site of polarized growth. To validate the model, we used targeted genetic perturbations to selectively disrupt key properties of Sst2 and its induction by pheromone. Together our results reveal that a regulator of G protein signaling can also regulate the G protein–coupled receptor. Whereas Sst2 negatively regulates G protein signaling, it acts in a positive manner to promote receptor retention at the growing edge. |
---|