Cargando…

15d-PGJ2 Reduced Microglia Activation and Alleviated Neurological Deficit of Ischemic Reperfusion in Diabetic Rat Model

To investigate the effect of PPARγ agonist 15d-PGJ2 treatment on the microglia activation and neurological deficit of ischemia reperfusion in diabetic rat model, adult Sprague-Dawley rats were sacrificed for the research. The rats were randomly categorized into four groups: (1) sham-operated group;...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Lihong, Li, Gang, Feng, Xiaofang, Wang, Luojun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710931/
https://www.ncbi.nlm.nih.gov/pubmed/26844229
http://dx.doi.org/10.1155/2015/864509
Descripción
Sumario:To investigate the effect of PPARγ agonist 15d-PGJ2 treatment on the microglia activation and neurological deficit of ischemia reperfusion in diabetic rat model, adult Sprague-Dawley rats were sacrificed for the research. The rats were randomly categorized into four groups: (1) sham-operated group; (2) standard ischemia group; (3) diabetic ischemia group; (4) diabetic ischemia group with diabetes and treated with 15d-PGJ2. Compared to the sham-operated group, all the ischemic groups have significantly severer neurological deficits, more TNF-α and IL-1 expression, increased labeling of apoptotic cells, increased CD68 positive staining of brain lesion, and increased volume of infarct and cerebral edema in both 24 hours and 7 days after reperfusion. Interestingly, reduced neurological deficits, decreased TNF-α and IL-1 expression, less apoptotic cells and CD68 positive staining, and alleviated infarct and cerebral edema volume were observed when 15d-PGJ2 was intraperitoneally injected after reperfusion in diabetic ischemia group, suggesting its neuroprotective role in regulating microglia activation, which may have a therapeutic application in the future.