Cargando…
Noise reduction of diffusion tensor images by sparse representation and dictionary learning
BACKGROUND: The low quality of diffusion tensor image (DTI) could affect the accuracy of oncology diagnosis. METHODS: We present a novel sparse representation based denoising method for three dimensional DTI by learning adaptive dictionary with the context redundancy between neighbor slices. In this...
Autores principales: | Kong, Youyong, Li, Yuanjin, Wu, Jiasong, Shu, Huazhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710997/ https://www.ncbi.nlm.nih.gov/pubmed/26758740 http://dx.doi.org/10.1186/s12938-015-0116-3 |
Ejemplares similares
-
Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation
por: Jiang, Changhui, et al.
Publicado: (2018) -
Noise-aware dictionary-learning-based sparse representation framework for detection and removal of single and combined noises from ECG signal
por: Satija, Udit, et al.
Publicado: (2017) -
Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation
por: Grossi, Giuliano, et al.
Publicado: (2017) -
Deep Learning-based Noise Reduction for Fast Volume Diffusion Tensor Imaging: Assessing the Noise Reduction Effect and Reliability of Diffusion Metrics
por: Sagawa, Hajime, et al.
Publicado: (2020) -
Image denoising via a non-local patch graph total variation
por: Zhang, Yan, et al.
Publicado: (2019)