Cargando…
Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber)
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaur...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4711988/ https://www.ncbi.nlm.nih.gov/pubmed/26760498 http://dx.doi.org/10.1371/journal.pone.0146428 |
_version_ | 1782409993729867776 |
---|---|
author | Gessele, Nikodemus Garcia-Pino, Elisabet Omerbašić, Damir Park, Thomas J. Koch, Ursula |
author_facet | Gessele, Nikodemus Garcia-Pino, Elisabet Omerbašić, Damir Park, Thomas J. Koch, Ursula |
author_sort | Gessele, Nikodemus |
collection | PubMed |
description | Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals. |
format | Online Article Text |
id | pubmed-4711988 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47119882016-01-26 Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber) Gessele, Nikodemus Garcia-Pino, Elisabet Omerbašić, Damir Park, Thomas J. Koch, Ursula PLoS One Research Article Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals. Public Library of Science 2016-01-13 /pmc/articles/PMC4711988/ /pubmed/26760498 http://dx.doi.org/10.1371/journal.pone.0146428 Text en © 2016 Gessele et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Gessele, Nikodemus Garcia-Pino, Elisabet Omerbašić, Damir Park, Thomas J. Koch, Ursula Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber) |
title | Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber) |
title_full | Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber) |
title_fullStr | Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber) |
title_full_unstemmed | Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber) |
title_short | Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber) |
title_sort | structural changes and lack of hcn1 channels in the binaural auditory brainstem of the naked mole-rat (heterocephalus glaber) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4711988/ https://www.ncbi.nlm.nih.gov/pubmed/26760498 http://dx.doi.org/10.1371/journal.pone.0146428 |
work_keys_str_mv | AT gesselenikodemus structuralchangesandlackofhcn1channelsinthebinauralauditorybrainstemofthenakedmoleratheterocephalusglaber AT garciapinoelisabet structuralchangesandlackofhcn1channelsinthebinauralauditorybrainstemofthenakedmoleratheterocephalusglaber AT omerbasicdamir structuralchangesandlackofhcn1channelsinthebinauralauditorybrainstemofthenakedmoleratheterocephalusglaber AT parkthomasj structuralchangesandlackofhcn1channelsinthebinauralauditorybrainstemofthenakedmoleratheterocephalusglaber AT kochursula structuralchangesandlackofhcn1channelsinthebinauralauditorybrainstemofthenakedmoleratheterocephalusglaber |