Cargando…

A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice

This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, f...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yong, Ma, Xiaolei, Liu, Yong, Gong, Ke, Henricakson, Kristian C., Xu, Maozeng, Wang, Yinhai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712001/
https://www.ncbi.nlm.nih.gov/pubmed/26761209
http://dx.doi.org/10.1371/journal.pone.0146850
_version_ 1782409995544952832
author Wang, Yong
Ma, Xiaolei
Liu, Yong
Gong, Ke
Henricakson, Kristian C.
Xu, Maozeng
Wang, Yinhai
author_facet Wang, Yong
Ma, Xiaolei
Liu, Yong
Gong, Ke
Henricakson, Kristian C.
Xu, Maozeng
Wang, Yinhai
author_sort Wang, Yong
collection PubMed
description This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers’ route choice behavior.
format Online
Article
Text
id pubmed-4712001
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47120012016-01-26 A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice Wang, Yong Ma, Xiaolei Liu, Yong Gong, Ke Henricakson, Kristian C. Xu, Maozeng Wang, Yinhai PLoS One Research Article This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers’ route choice behavior. Public Library of Science 2016-01-13 /pmc/articles/PMC4712001/ /pubmed/26761209 http://dx.doi.org/10.1371/journal.pone.0146850 Text en © 2016 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Wang, Yong
Ma, Xiaolei
Liu, Yong
Gong, Ke
Henricakson, Kristian C.
Xu, Maozeng
Wang, Yinhai
A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice
title A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice
title_full A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice
title_fullStr A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice
title_full_unstemmed A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice
title_short A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice
title_sort two-stage algorithm for origin-destination matrices estimation considering dynamic dispersion parameter for route choice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712001/
https://www.ncbi.nlm.nih.gov/pubmed/26761209
http://dx.doi.org/10.1371/journal.pone.0146850
work_keys_str_mv AT wangyong atwostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT maxiaolei atwostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT liuyong atwostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT gongke atwostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT henricaksonkristianc atwostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT xumaozeng atwostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT wangyinhai atwostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT wangyong twostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT maxiaolei twostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT liuyong twostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT gongke twostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT henricaksonkristianc twostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT xumaozeng twostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice
AT wangyinhai twostagealgorithmfororigindestinationmatricesestimationconsideringdynamicdispersionparameterforroutechoice